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ABSTRACT

In DNN-based TTS synthesis, DNNs hidden layers can be
viewed as deep transformation for linguistic features and the
output layers as representation of acoustic space to regress
the transformed linguistic features to acoustic parameters.
The deep-layered architectures of DNN can not only repre-
sent highly-complex transformation compactly, but also take
advantage of huge amount of training data. In this paper, we
propose an approach to model multiple speakers TTS with
a general DNN, where the same hidden layers are shared
among different speakers while the output layers are com-
posed of speaker-dependent nodes explaining the target of
each speaker. The experimental results show that our ap-
proach can significantly improve the quality of synthesized
speech objectively and subjectively, comparing with speech
synthesized from the individual, speaker-dependent DNN-
based TTS. We further transfer the hidden layers for a new
speaker with limited training data and the resultant synthe-
sized speech of the new speaker can also achieve a good
quality in term of naturalness and speaker similarity.

Index Terms— statistical parametric speech synthesis,
deep neural networks, multi-task learning, transfer learning

1. INTRODUCTION

Deep neural networks (DNNs) has shown its great power for
acoustic modeling in TTS synthesis. Zen, et al. [1] inves-
tigated DNN-based TTS and pointed out comprehensively
some intrinsic limitations of the conventional HMM-based
speech synthesis, e.g. decision-tree based contextual state
clustering. They showed that, on a rather large training corpus
(735,000 sentences), DNN can yield better TTS performance
than its GMM-HMM counterpart with a similar number of
parameters. Qian, et al. [2] examined various aspects of
DNN-based TTS training with a moderate size corpus (5,000
sentences), which is more commonly used for parametric
TTS training. Fan, et al. [3] introduced LSTM-based RNN
into parametric TTS synthesis, which uses deep structure
for state transition modeling and upgrade the acoustic model
from frame-level to sequence-level. However, compared with
hidden Markov models (HMMs) in conventional parametric
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TTS synthesis [4], DNN is so complicate that it needs large
amounts of phonetically and prosodically rich speech data to
train a high-quality model. Due to the huge cost of recording,
the available training data is always very limited, especially
for one specific speaker.

In conventional HMM-based TTS synthesis, speaker
adaptive training [5] uses multiple speakers’ voice to train
an average voice model and then adapt the average model
to the speakers. This approach addresses the limitation of
small-size corpus by joint training with various speakers’
voice under various conditions. Similar technique is expected
to improve DNN-based TTS synthesis.

Multi-task learning [6] and transfer learning [7] are both
hot topics in machine learning, and they can also be applied
into deep learning [8], such as in automatic speech recogni-
tion (ASR), DNN can learn knowledge across multiple lan-
guages and transfer the knowledge to another language [9].
Although the role of DNN in TTS is different from ASR, the
ideas can still be used as reference.

In DNN-based TTS synthesis, DNN is used as regression
model for linguistic and acoustic feature mapping. DNN
can be viewed as a layer-structured model, that jointly learns
a complicated linguistic feature transformation in hidden
layers and a speaker-specific acoustic space in regression
layer. With such structure understanding of DNN, we can
decompose DNN into two parts (linguistic transformation
and acoustic regression) to benefit DNN-based TTS synthesis
by multi-speakers’ data and solve the adaptation problem by
shared hidden representation.

In this paper, we proposed a multi-speaker DNN, in which
the hidden layers are shared across different speakers while
the regression layers are speaker dependent. The shared hid-
den layers and the separate regression layer of each speaker
are jointly trained with multiple speaker-dependent TTS cor-
puses. The shared hidden layers can be viewed as the global
linguistic feature transformation that can be used for any
speaker. Actually, the architecture and training procedure of
multi-speaker DNN are instances of the multi-task learning,
which combines the models with multiple related tasks and
strengths them with shared knowledge.

Moreover, the shared linguistic feature transformation can
be even transferred to a new speaker, which is a derivative of
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transfer learning. For the new speaker with very limited train-
ing data, speaker adaptation can also be achieved by fixing the
shared hidden layers and only updating the regression layer.

2. MULTI-SPEAKER MODELING

In the DNN-based TTS synthesis [2], as shown in Figure 1,
DNN takes the converted linguistic features (binary & nu-
meric) as input and acoustic features (LSP, FO and U/V flag)
as output, and learns the mapping between the linguistic and
acoustic space. The model for each speaker was trained indi-
vidually with their own voice.

Figure 2 shows the architecture of proposed multi-speaker
DNN. In multi-speaker DNN, hidden layers are shared across
all the speakers in training corpus, and can be considered as
the global linguistic feature transformation shared by all the
speakers. Conversely, each speaker has his own output layer,
so-called regression layer, to modeling the specific acoustic
space of himself. Compared with the conventional DNN,
multi-speaker DNN takes the same input linguistic feature,
which converted from text in the same manner, and the same
output acoustic feature for each speaker.

Due to the changes in architecture, training algorithm
also has some differences, but is still based on conventional
back-propagation (BP) algorithm. For multi-speaker DNN,
it’s very crucial to train the network for all the speakers simul-
taneously, which means that each mini-batch should consider
the data from all the speakers during the stochastic gradient
decent (SGD) procedure, also training data also needs to be
shuffled across all the speakers. Since each regression layer
can only be used for its corresponding speaker, the error
signal of one training sample can only be back-propagated
to the specific regression layer and shared hidden layers.
Fortunately, multi-speaker DNN can still be pre-trained by
discriminative layer-wise pre-training [10] with multi-speaker
corpus.

In synthesis, multi-speaker DNN can be decomposed. By
only taking the specific regression layer and shared hidden
layer, the sub-model can be used to synthesize speech of any
speaker already trained in the multi-speaker DNN.

Multi-speaker DNN shares the hidden layers between dif-
ferent speakers, so that introduces a structural regularization
to DNN model, which can be considered as an instance of
multi-task learning. Multi-speaker DNN is joint optimized
with multiple speakers’ data, and supposed to benefit each
speaker’s synthesized speech from the knowledge of other
speakers.

3. SPEAKER ADAPTATION

The shared hidden layers, lying in the multi-speaker DNN as
Figure 2, can be treated as a global linguistic feature transfor-
mation applicable to multiple speakers. So the shared hidden
layers can also be borrowed to transform linguistic feature for
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Fig. 1. DNN Architecture in DNN-based TTS Synthesis.
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Fig. 2. Multi-speaker DNN Architecture in DNN-based TTS
Synthesis.

new speakers. This procedure can be considered as a spe-
cial case of transfer learning, also called speaker adaptation
in TTS synthesis.

The training procedure for adaptation is quite straight-
forward. Due to training data for adaptation is very limited,
the hidden layers transferred from multiple speakers’ data
should be fixed and only the regression layer will be updated.
Considering there is only a linear regression between the
shared hidden layers’ output and target, parameter estimation
is much simpler than the non-linear problem, such as DNN,
and usually has closed-form solution. So the least squares
method, instead of BP algorithm, can effectively and effi-
ciently minimize the squared residuals between prediction
and ground-truth.

With proposed speaker adaptation method, DNN-based
TTS synthesis will be able to apply to the speakers, who
have very limited training data. We also conjecture that,
by borrowing knowledge from other speakers and only re-
estimating a small portion of model parameters, the model
for the speaker to adapt will be more robust.

4. EXPERIMENTS

4.1. Experimental Setup

A corpus of multiple native Mandarin speakers, both pho-
netically and prosodically rich, is used in our experiments.
Speech signals are sampled at 16 kHz, windowed by a 25-ms
window, and shifted every 5-ms. An LPC of 24th order is
transformed into static LSPs and their dynamic counterparts.
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The phonetic and prosodic contexts include quin-phone, the
position of a phone, syllable and word in phrase and sentence,
the length of word and phrase, stress of syllable, POS of word.

In the corpus, there are two male and two female stan-
dard Mandarin speakers for multi-speaker training. To evalu-
ate our proposed multi-speaker DNN, We design three groups
of training set:

e Set A: two male speakers; one hour speech for each;
with the same transcriptions

e Set B: two male and two female speakers; one hour
speech for each; with the same transcriptions

e Set C: two male and two female speakers; one hour
speech for each; with different transcriptions among
different speakers

We also choose 100 utterances with the same transcriptions
for each speakers, and the transcriptions of these utterances
are never covered in the training set. And there is another
male accented Mandarin speakers for adaptation.

In the baseline DNN-based TTS, the input feature vec-
tor contains 585 dimensions, where 549 are binary features
for categorical linguistic contexts and the rest are numeri-
cal linguistic contexts. The output feature vector contains a
voiced/unvoiced flag, log FO, LSP, gain, their dynamic coun-
terparts, totally 79 dimensions. Voiced/unvoiced flag is a
binary feature that indicates the voicing of the current frame.
DNN is set with 3 hidden layers and 512 nodes for each
layer. An exponential decay function is used to interpolate
FO in unvoiced speech regions. 80% of silence frames are re-
moved from the training data to balance the training data and
to reduce the computational cost. Removing silence frames
in DNN training was found useful for avoiding DNN over-
learning silence label in speech recognition task. Both input
and output features of training data are normalized to zero
mean and unity variance. The weights are trained by back-
propagation procedure with a mini-batch based stochastic
gradient descent algorithm.

For the testing, DNN outputs are firstly fed into a param-
eter generation module to generate smooth feature parame-
ters with dynamic feature constraints. Then formant sharp-
ening based on LSP frequencies is used to reduce the over-
smoothing problem of statistic parametric modeling and the
resultant “muffled” speech. Finally speech waveforms are
synthesized by an LPC synthesizer by using generated speech
parameters.

Objective and subjective measures are used to evaluate the
performance of TTS systems on testing data. Synthesis qual-
ity is measured objectively in terms of distortions between
natural test utterances of the original speaker and the syn-
thesized speech frame-synchronously where oracle state du-
rations (obtained by forced alignment) of natural speech are
used. The objective measures are FO distortion in the root
mean squared error (RMSE), voiced/unvoiced (V/U) swap-
ping errors and normalized spectrum distance in log spectral
distance (LSD). The subjective measure is an AB preference

Table 1. Objective Measures on Set A with and without
Multi-speaker Modelling

Speaker Measures Baseline Multi-speaker
LSD (dB) 4.02 3.92 (-2.5%)

Male #1  V/U Err rate (%) 4.26 4.19 (-1.6%)
FO RMSE (Hz) 22.6 21.7 (-4.0%)

LSD (dB) 3.96 3.85 (-2.8%)

Male #2  V/U Err rate (%) 7.36 6.78 (-7.8%)
FO RMSE (Hz) 16.6 15.5 (-6.6%)

Table 2. Objective Measures on Set B with and without
Multi-speaker Modelling

Speaker Measures Baseline  Multi-speaker
LSD (dB) 4.02 3.84 (-4.5%)

Male #1 V/U Err rate (%) 4.26 4.19 (-1.6%)
FO RMSE (Hz) 22.6 21.2 (-6.2%)

LSD (dB) 3.96 3.77 (-4.8%)

Male #2  V/U Err rate (%) 7.36 6.69 (-9.1%)
FO RMSE (Hz) 16.6 15.3 (-7.8%)

LSD (dB) 3.77 3.60 (-4.5%)

Female #1  V/U Err rate (%) 5.96 5.89 (-1.2%)
FO RMSE (Hz) 29.5 26.8 (-9.2%)

LSD (dB) 4.02 3.83 (-4.7%)

Female #2  V/U Err rate (%) 7.54 7.32 (-2.9%)
FO RMSE (Hz) 259 23.8 (-8.1%)

test between speech sentence pairs synthesized by different
systems. In each preference test, we invite 10 native Man-
darin subjects and each subject evaluates 50 pairs by using
headsets. There are three preference choices: 1) the former is
better; 2) the latter is better; 3) no preference or neutral (The
difference between the paired sentences can not be perceived
or can be perceived but difficult to choose which one is bet-
ter).

4.2. Evaluation Results and Analysis

To evaluate whether multi-speaker modeling can benefit
DNN-base TTS synthesis, we firstly try to apply the pro-
posed method on Set A. As shown in Table 1, multi-speaker
modelling outperforms baseline system in all kinds of objec-
tive measures. The results indicate that shared hidden layers
for linguistic feature transformation can effectively exploit
many commonalities between speakers.

As we known that there are a lot of acoustic differences
between male and female, multi-speaker modeling is ex-
pected to be evaluated with Set B which is a cross-gender
corpus. The results shown in Table 2 indicate that shared
hidden layers can transform the linguistic information into
an universal space for both male and female, and make the
synthesized waveform better.

For better linguistic modelling, multi-speaker system
should be further improved by more widely covered linguis-
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Table 3. Objective Measures on Set C with and without
Multi-speaker Modelling

Speaker Measures Baseline Multi-speaker
LSD (dB) 4.34 4.13 (-4.8%)
Male #1 V/U Err rate (%) 4.26 4.09 (-4.0%)
FO RMSE (Hz) 23.4 21.4 (-8.5%)

LSD (dB) 3.96 3.43 (-13.4%)

Male #2  V/U Err rate (%) 7.36 5.84 (-20.7%)
FO RMSE (Hz) 16.6 13.9 (-16.3%)
LSD (dB) 391 3.74 (-4.3%)
Female #1  V/U Err rate (%) 5.88 5.82 (-1.0%)
FO RMSE (Hz) 28.9 27.7 (-4.2%)
LSD (dB) 4.00 3.81 (-4.8%)
Female #2  V/U Err rate (%) 7.64 7.05 (-7.7%)
FO RMSE (Hz) 25.2 22.5 (-10.7%)

tic data. Therefore, we train the model on Set C, which

contains speech with the totally different transcripts among
different speakers. As shown in Table 3, comparing with
Table 2, the distance between synthesis and natural speech
can be further reduced with the same size of training corpus.
We also evaluate the pair of system by perceptual test. The
preference score, shown in Figure 3, indicates multi-speaker
modelling can significantly (at p < 0.01 level) improve the
DNN-based TTS synthesis with multiple speakers’ corpus.

51% 17% 32%
Multi-speaker Neutral Baseline
Fig. 3. Preference score on Set C with and without multi-
speaker modelling.

Speaker adaptation technique is usually used for the
speaker with very limited data or whose speech is not very
friendly to the synthesis system training. So in this experi-
ments, we use the corpus from a male Chinese speaker, whose
Mandarin is not very standard and makes it very hard to train
a good synthesis model.

Speaker adaptation is build on the top of well-trained
multi-speaker system. Shared hidden layers are borrowed
from the multi-speaker system and keep their parameters
fixed. The new speaker’s data is only used to train a new
regression layer.

As adaptation task is very sensitive to the size of train-
ing data, we firstly try to use different size of training data
to investigate the relationship between data size and perfor-
mance. As shown in Figure 4, it’s not a surprise that objective
measures will be reduced with more training data, but we can
find that the decrease becomes much slower when using more
than 100 training utterances, which size is commonly used for
speaker adaptation.

To examine the performance of our proposed adaptation
method for DNN-based TTS, we add other two systems as
references, except using 100 utterances training data for adap-
tation. One system (multi-speaker) directly puts the 100 ut-
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Fig. 4. Objective measures of adaptation with different train-
ing data size.

Table 4. Objective measures for speaker adaptation and its
control group

Measures Adaptation Multi-speaker Baseline

LSD (dB) 4.15 4.13 3.79
V/U Err rate (%) 5.25 5.30 4.78
FO RMSE (Hz) 8.05 8.46 7.81

terances training data into the multi-speaker training as a new
speaker. The other (baseline) uses 1000 utterances training
data (10 times to adaptation) to train a mono-speaker DNN-
based TTS synthesis. Table 4 shows that the performance of
proposed adaptation method is very similar to multi-speaker
training, whereas proposed adaptation method can be trained
in only few minutes. However, due to the limitation of train-
ing data size, the baseline system training with 1000 utter-
ances achieves the best objective performance.

Subjective test are performed between the adaptation and
baseline system, as shown in Figure 5. It’s interesting that,
opposite to the subjective measure, the adaptation approach
can significantly (at p < 0.01 level) outperform the baseline
system. One possible reason is that, although the speech from
the speaker to adapt is not standard Mandarin, the knowledge
of other speakers transferred by the shared hidden layers can
correct some mispronunciations but not influence the similar-

1ty.

45% 21% 34%
Speaker adaptation Neutral Multi-speaker

Fig. 5. Preference score of adaptation and baseline of DNN-
based TTS.

5. CONCLUSIONS

In this paper, we investigate the multi-task learning into
DNN-based TTS synthesis for multi-speaker modelling and
achieve improvements on both objective and subjective mea-
surements, comparing with individually modelling baseline.
Also, we employ transfer learning for speaker adaptation and
accomplish good quality for both naturalness and speaker
similarity. Further, we will try to apply this methods onto
some bigger corpus with more speakers.
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